
8 The Delphi Magazine Issue 60

Multi-Threading And COM
by Brian Long

Growing numbers of Delphi
developers are getting into

COM. This is a good thing, as COM
is providing more of the underpin-
nings of Windows application
development.

There is a growing amount of
information for Delphi developers
on COM: I’ve listed some refer-
ences at the end. However, most of
this deals with COM in simple,
non-threaded applications; there
is little on multi-threaded COM
applications for the Delphi devel-
oper (but see Reference 1).

This article aims to provide an
understanding of the concepts, ter-
minology and issues involved in
multi-threaded COM program-
ming. It does not try and teach you
safe multi-threaded programming,
which is a separate topic. Instead,
it assumes you have an apprecia-
tion of the general issues of multi-
threaded programming, such as
the necessity to protect or syn-
chronise access to resources
accessible from more than one
thread. If you need more informa-
tion on this, see References 6 and 7.

I should mention that Delphi 3
did not have built-in support for
thread-safe COM objects. Delphi 4
added some support, although it
needed a little hand-holding.
Delphi 5 was the first version to
cater automatically for thread-
aware COM objects in the RTL.

Apartments
No, I’m not about to launch into
some spiel about American city
dwellings. Instead, an apartment is
an important thread-related con-
cept in COM. When you read about
multi-threaded COM programming
you might find it all rather confus-
ing, due to the constant references
to various types of apartments, so I
will start by investigating what an
apartment is.

As Windows developers, you are
probably comfortable with the way
parts of applications are managed
by Windows. When a program is

launched, Windows creates a pro-
cess ‘object’ containing informa-
tion about that process. I placed
the word object in quotes because,
whilst it may well be stored as an
object, programmers do not have
access to it in such a form.

Each process object has a
unique identifying number, or pro-
cess identifier (a DWord or unsigned
32-bit number). Applications can
also gain varying degrees of access
to the process object by getting a
handle to it, which is called a pro-
cess handle (a THandle, which again
is a 32-bit number).

When the program initiates any
threads, be it the first (or primary)
thread of an application, or addi-
tional (secondary) threads, Win-
dows similarly manages them with
thread objects. These contain the
state information of the thread, or
the thread’s context. These thread
objects also have unique identifi-
ers (thread identifiers) and can be
accessed through a thread handle.

It perhaps should be mentioned
at this point that the Delphi VCL is
almost entirely not thread-safe.
You should therefore use some
form of synchronisation to access
any VCL objects from any thread
other than the primary thread. In a
normal thread class (inherited
from TThread), you would use the
Synchronize method.

When an application thread
creates a window, Windows also
manages that via some internal
data structure containing informa-
tion about the window, which we
refer to with a window handle (a
HWnd or THandle).

Processes, threads and windows
are old hat as Windows-managed
entities. Apartments are not as
common to most, despite the fact
that any application dealing with
COM contains at least one of them.
Apartments also reside in an exe-
cutable and are managed by Win-
dows, but we programmers do not
have easy access to them via han-
dles or identifiers. Nevertheless,

they get created (by COM) and are
managed for us by the OS.

The job of an apartment is to
control how interface method calls
are dispatched to COM objects in a
multi-threaded environment. If a
COM object has not been written
with the ability to deal with simul-
taneous access from multiple
threads (in other words is not
thread-safe) the apartment mecha-
nism will ensure that the object
receives only one method call at a
time. If the object has been written
to be thread-safe, the apartment
permits simultaneous access from
multiple threads.

Apartment Types
The apartment therefore acts as a
filter or funnel that ensures the
COM object gets called in a manner
that it can deal with. As was subtly
implied by the previous paragraph
there are two types of apartment:
one that enforces serialised
method calls (ensures only one
method call executes at any time)
and one that does not.

The first type is referred to as a
Single-Threaded Apartment, or STA.
Old Microsoft documentation
referred to the STA model simply
as the apartment-threaded model.
The STA was introduced in Win-
dows NT 3.51 and Windows 95. The
second is called a Multi-Threaded
Apartment, or MTA. The MTA
model is also known as the
free-threaded model. The MTA was
introduced in Windows 95 with
DCOM installed and in NT 4.0.

There is also a third apartment
type, the Thread-Neutral Apart-
ment, or TNA, introduced by COM+
on Windows 2000, but I’ll ignore
that for the time being, to keep
things as simple as possible.

A COM object must belong to an
apartment, be it an STA or an MTA.
Moreover, it can only belong to
one apartment. A COM object can
advertise what type of apartment
it is designed to work with by its
threading model. In Delphi’s COM

10 The Delphi Magazine Issue 60

Object Wizard you can choose an
object’s threading model. In-
process COM objects advertise
their threading model in the Win-
dows registry, as we will see later.

Any thread that accesses a COM
object also belongs to exactly one
apartment at a time. An apartment
contains one or more threads in an
application that can interact with
COM (for example by calling COM
object methods). If a thread in an
apartment creates a COM object,
that object belongs to the same
apartment, although technically
this may not always be the case.

An apartment can be shared by
any number of COM objects, which
will all be accessible by clients in a
manner dictated by the apartment
type. Once instantiated, COM
objects can never move to other
apartments, and so an apartment is
part of the object’s identity.

An STA is so named because only
one thread belongs to it. However,
an arbitrary number of threads can
belong to an MTA. The enforced
rule is that only threads in a COM
object’s apartment are able to
directly call its methods. If an object
needs to be accessed by a thread in
another apartment, either in the
same process or in a different one,
the interface reference must be
marshaled to the apartment. This
concept will be detailed later.

Before moving on to the next
section I must acknowledge that if
this is all new to you, then it proba-
bly sounds very woolly, imprecise,
up in the air and difficult to relate
to. Also, all this nebulous talk of
apartments, with no real details,
may be prompting the popular ‘Er,
so what?’ response. This is per-
fectly understandable.

As we proceed, real details will
be revealed, with the intention of
solidifying this background infor-
mation. If the first portion of this
article makes little sense on first
reading, please be patient. Read
through to the end, then start
again. You should find that it all
becomes much clearer when read
through a second time.

It’s a chicken and egg situation
really. You need the background
information to appreciate the real
details later, but you also need all

those details in order to appreciate
what the background is telling you.
Take a deep breath, let’s get back
to the story...

How Apartments Are Created
Whilst a process must have at least
one thread in order to work, it can
have zero or more apartments.
Remember that a thread which
calls COM routines must belong to
an apartment. Any thread can
access COM objects, with the
caveat that the thread must initial-
ise the Windows COM subsystem
to do so. So an application with no
apartments does not interact with
COM.

This implies that a thread enters
an apartment when COM is initial-
ised by that thread (we’ll see later
how the apartment type is deter-
mined). When a thread enters an
apartment, COM ensures the apart-
ment exists, creating it if need be.

COM stores information about
the apartment in the TLS (the
thread’s local storage area). If that
thread then proceeds to create a
COM object instance, that COM
object belongs to that thread’s
apartment. The thread leaves the
apartment by shutting down COM
before terminating.

An application is able to have at
most one MTA, but can have as few
or as many STAs as you choose.
Any thread that enters an STA cre-
ates a new apartment. Any thread
that enters an MTA will either
create the application’s sole MTA
(if it is the first thread to enter it) or
enter the existing MTA created by
some other thread entering it
earlier.

When you play with COM in
Delphi, you might not realise it but
COM is implicitly initialised in
order for you to do so. Typically
you will have ComObj in your uses
clause, or maybe ComServ (which
itself uses ComObj). The initialis-
ation section of ComObj (in Delphi 4
and later) ensures that the project
source’s Application.Initialize
will cause COM to be initialised for
your primary thread, and the final-
isation section closes down COM.

This means that any Delphi
application that uses ComObj
or ComServ sets up some type of

apartment. It also means that you
must ensure that the Applica-
tion.Initialize call remains at the
beginning of the code in the pro-
ject file (.DPR file) for this to work
correctly.

The implication of all the above
is that all COM applications are
made up of one or more apart-
ments, be they COM clients or
COM servers. Any process that
makes COM calls will involve at
least one apartment.

In the case of a client talking to
an out-of-process COM server,
both the client and server will have
at least one apartment (they each
have at least one thread doing
COM things).

With a client talking to an
in-process server, there is only one
process in the equation. Nominally
you might assume that there
would be one or more apartments.
However, if the client apartment
type does not match the thread
capabilities of the COM object,
COM will helpfully set up a thread
of its own in a new apartment,
thereby giving a minimum of at
least two apartments (we will
come back to this later).

Why Have Apartments?
This is a good question to look at
again at this point. What is the pur-
pose of an apartment? Well, when
you develop a COM object you are
at liberty to go to town building in
thread safety at every appropriate
point (synchronising access to any
shared resources and so on) to
enable your object to be safely
accessed by many concurrent
threads. Alternatively, you may
choose to write your COM object
in a thread-ignorant way, avoiding
the concurrency issues altogether.
It’s your choice.

However, since registered COM
objects can be accessed by any
COM client application, single-
threaded or multi-threaded,
thought needs to be given to what
might happen. The client may, for
example, have multiple threads of
its own, each of which will make
calls to the object. Or there could
be many client applications run-
ning, all of which communicate
with the same COM object. Either

12 The Delphi Magazine Issue 60

way, if your COM object is not
thread-safe, this could prove prob-
lematic. Or it could if COM didn’t
solve the problem on your behalf.

If your COM object is not
thread-safe, it should be created in
a single-threaded apartment. If it is
thread-safe, it can be created in a
multi-threaded apartment. In the
case of a non thread-safe object in
an STA, the apartment itself
ensures that method calls come in
one at a time from the various
threads around the system,
regardless of how simultaneously
the calls are made. On the other
hand, an MTA does not control the
order in which method calls arrive,
leaving your thread-safe COM
object able to service as many
concurrent calls as it can.

How Does An STA Work?
It is all very well claiming that an
STA serialises COM object method
calls, but it might help firm things
up in your mind if you understand
how this magic is performed.

COM sets up a proxy object when
a COM client wants to talk to a COM
object in a different apartment or
process (see Reference 5). The
proxy is set up to look exactly like
the target object, so the client
application is not made aware of
the deception. The client’s inter-
face reference actually points to
the proxy.

In order for COM to do this, the
type library that describes the
interface must be registered so
COM can learn how the interface is
laid out. In DCOM applications, this
means the server’s type library
must be registered on the client
machine.

When the client calls one of the
COM object methods it actually

talks to the proxy. The
proxy then deals with
communicating the
method call across to
the real object in the
server. Since the proxy
is associated with the COM
object’s apartment, it knows
whether method calls should be
serialised or not. If the COM object
resides in an STA then the proxy
must somehow ensure that
method calls arrive at the real
object one at a time.

To do this, COM creates a hidden
window for each STA. Each method
call is translated into a Windows
message (with all the pertinent
parameter data packaged up). The
message is posted to the hidden
thread window with PostThread-
Message, thereby ending up in the
thread’s message queue along with
any other calls to methods of this
or other objects in the same STA.
All method calls made by threads
not belonging to the COM object’s
STA are dealt with in this way.

There is a requirement that the
thread in an STA have a message
loop (or message pump) to sequen-
tially pull out each message and
send it to the target window’s
window procedure. The primary
thread of any Delphi application
already has one of these in the
Application object. It is this mes-
sage loop that is responsible for
taking all the usual user-generated
mouse and keyboard messages
and directing them to the right
forms and controls. Any additional

threads that wish
to initialise COM
and enter a new
STA must also
have a message
loop (we will get

onto the details later when we look
at creating new STAs).

Since all the method calls end up
as messages in a queue, the mes-
sage loop will pull each message
from the queue one at a time, and
translate them into method calls
one at a time. Each message is indi-
vidually pulled from the queue and
given to the hidden COM window’s
window procedure, which extracts
all the parameters and calls the
object directly. Since the message
loop is part of the STA’s thread this
is perfectly permissible.

The fact that STA COM object
method calls are made via a mes-
sage queue and message loop
inherently means that all STA COM
object method calls will be
serialised.

Figure 1 shows the surface view
of several COM clients making
simultaneous calls to an object in
an STA in some other process. To
the clients, things are very simple.
They make method calls. The
method calls execute. However, as
explained above, things are more
complex under the hood, in order
to ensure the method calls occur
one after another.

Figure 2 shows a more realistic
view of things. Each client makes a
method call through the supplied
COM proxy object. The COM proxy
posts a message into the server
STA hidden COM window message
queue. The message pump pulls
each one out in turn, resulting in a
method call, but each method is
called from the STA’s single thread
in a serial fashion.

Figure 3 shows WinSight display-
ing all the windows that are part of
a simple COM client and server
set-up (the server is an out-of-
process executable). Each applica-
tion has a TApplication window

Client process BClient process B

ClientClient
apartmentapartment

Client process CClient process C

ClientClient
apartmentapartment

Client process AClient process A

ClientClient
apartmentapartment

Server processServer process

Server STServer STAA

Object XObject X

➤ Figure 1: Three
client processes
simultaneously
calling methods of
an object in an STA.

Client process BClient process B

ClientClient
apartmentapartment

Object XObject X
proxyproxy

Client process CClient process C

ClientClient
apartmentapartment

Object XObject X
proxyproxy

Client process AClient process A

ClientClient
apartmentapartment

Object XObject X
proxyproxy

Server processServer process

Server STServer STAA

Object XObject X

messagemessage
queuequeue

messagemessage
pumppump

methodmethod
callscalls

➤ Figure 2: What
really happens
when
simultaneous
STA method
calls are made.

August 2000 The Delphi Magazine 13

and a form window (normal for a
Delphi app). However, since both
the client and server processes
initialise COM, they both have an
apartment. COM creates a hidden
window for each apartment with a
window class of OleMainThread-
WndClass 0x#####. The caption of
each window is OleMainThread-
WndName, implying the window cor-
responds to the main (indeed only)
thread in each apartment, which in
this case are both STAs.

The lower portion of Figure 3
shows a pair of messages involved
in the STA to STA method call. The
first message is posted to the
server’s hidden COM window to
produce a serialised method call.
When it is complete, the second
message is posted back to the
client’s hidden window to allow it
to continue. The client STA thread
is effectively blocked by a COM-
provided message loop until the
method call returns and so the
return message arrives.

So objects in any given STA will
never suffer concurrent access,
since only one thread will ever be
in the apartment. However, there
can be multiple STAs in a process,
so global data must still be
protected with synchronisation of
some sort, such as a semaphore,
mutex or critical section.

How Does An MTA Work?
This might not sound like such a
sensible question right now. The
idea with an MTA is that the
objects within it can be called from
many threads simultaneously, so
what is there to know? Well, at this
point, remember the rule I stated
earlier: only threads in a COM
object’s apartment are able to
directly call its methods.

Consider a multi-threaded client
application talking to a thread-safe
object in an out-of-process server.
The client asks COM to create the
object, so COM starts the server,

whose main thread enters an MTA
and creates the COM object. Since
the client is in another process,
COM then provides a proxy object
to the client application.

Now, several of the client’s
threads, all of which are in an MTA,
wish to call upon the object. How-
ever, those threads are not in the
object’s apartment. They are in an
apartment in the client. In fact the
server only has one thread of its
own. So what does COM do to help
out? It provides threads from the
RPC (Remote Procedure Call)
thread pool which then enter the
server’s MTA. Each client call to
one of the object’s methods is exe-
cuted on one of these pooled
threads. That way, it doesn’t
matter how few explicitly created
threads are running in the server.

Some liaising is still done with a
hidden COM window during
method calls, but the MTA threads
need not have a message pump, as
calls are not being serialised.
Figure 4 shows WinSight examining
a client with an STA communicat-
ing with an MTA out-of-process
object on Windows 95. You can see
there are still messages posted
back and forth, and that the MTA
window has a different caption and
has different behaviour. In fact it
also has a different window class
on other Win32 platforms.

Of course, things are rather
different with an in-process server.
If an MTA client creates an object
in an MTA server, the MTA client
threads will be permitted to
directly call the object methods.

Since MTA object methods can
be called concurrently on various

threads, global data and instance
data must be accessed with care,
using synchronisation mecha-
nisms. Care must also be taken
with thread-local variables (those
declared with threadvar rather
than var). Since the MTA uses arbi-
trary threads from the RPC thread
pool, each time a method is called,
the thread-local variables will have
different values. This can be useful
in some situations, but is usually
unexpected.

This point has a further, not nec-
essarily obvious, ramification.
MTA-based objects cannot syn-
chronise data access by holding
locks that have thread affinity, such
as critical sections or mutexes.
Since the thread that creates a
mutex must be the same thread to
release the mutex (and the same
for a critical section), the arbitrary
thread selection nature of an MTA
prohibits their effectiveness,
unless used entirely within a single
method’s execution.

Choosing Apartment Types
To initialise COM (and enter an
apartment) a thread calls
OleInitialize, CoInitialize or
CoInitializeEx. CoInitialize and
OleInitialize allow a thread to
enter an STA. CoInitializeEx
allows a thread to enter an STA if
COINIT_APARTMENTTHREADED is
passed as the second parameter or
an MTA if COINIT_MULTITHREADED is
passed (the default).

Note that ComObj performs this
sort of COM initialisation for the
primary thread automatically by
its inclusion in a uses clause. For
other threads to do COM work,
they must explicitly initialise COM
(and therefore enter an apart-
ment). So, for example, to initialise
COM and allow a (non-primary)
thread to enter an MTA, you could
use the code in Listing 1.

CoInitializeEx only exists on
Windows 95 if DCOM for Windows

➤ Figure 3:
WinSight
showing
hidden STA
windows.

➤ Figure 4: A
client STA
window
and a
server MTA
window.

14 The Delphi Magazine Issue 60

95 has been installed, so care must
be taken when calling it to ensure it
exists. Note the code fully qualifies
the reference to the CoInitial-
izeEx variable in ComObj to ensure
the compiler doesn’t directly call
the routine via its import declara-
tion in the ActiveX unit. If it did, and
the API was not available (which
would be the case on Windows 95
without DCOM installed), an
unpleasant fatal error would
appear at program startup. If the
CoInitializeEx API is not available,
it falls back on CoInitialize.

A call to CoUninitialize causes a
thread to exit its apartment and
close down access to COM. This is
done with consideration for pend-
ing COM calls stuck in a COM
window message queue. If such
messages are pending, COM enters
a modal message loop dispatching
those messages (but ignoring
non-COM messages) to ensure no
COM method calls are lost.

COM client applications and
out-of-process COM server appli-
cations use this approach to
ensure that each thread that needs
to access COM objects is in an
appropriate apartment. But things
are a little different for in-process
COM servers (DLLs or OCXs).

Since DLLs are loaded into the
address space of the calling appli-
cation, and the code in a DLL is
accessed on the client applica-
tion’s thread, there might seem to
be a possible conflict of thread
awareness. If the DLL does not
create threads of its own, how can
it set up an appropriate apartment
to ensure that calls are serialised
(or not)?

One option would be for the DLL
code to initialise COM regardless.
However, a thread cannot actively
be in two or more different apart-
ment types at the same time, so if
CoInitializeEx is called twice on
one thread with different apart-
ment type flags, the second call will

cause an RPC_E_CHANGED_MODE error.
So this is not an option.

DLLs must never initialise or
shut down COM in their own initial-
isation or finalisation code. This is
because of how Windows implic-
itly loads DLLs: it may cause an infi-
nite loop or Access Violation,
particularly when using DCOM
across multiple machines.

In-Proc COM Object
Threading Model
The answer is that COM has
already thought of this. When an
in-process server is registered,
each COM object has an extra
value added into its registry data
by the class factory advertising the
appropriate threading model.
When COM loads the in-process
server and prepares to create a
COM object from it, it first checks
the ThreadingModel registry value
to see what threading support the
object has. Based upon what it
finds, it will do one of two things.

If the client thread’s apartment
type matches the COM object’s
advertised apartment support, it
does nothing at all, allowing the
client to talk directly to the object.
However, if the two apartment
models clash, COM creates a
thread of its own and enters an
appropriate apartment for the
COM object. The client thread is
given a proxy and things go back to
how they are with an out-of-
process COM server.

Two COM objects that reside in
the same process may belong to
different apartments and therefore
have different concurrency restric-
tions. This general arrangement
caters for in-process servers with
differing thread awareness to work
together in the same process. A
process with an MTA and one or
more STAs is sometimes called a
mixed-model process.

As you will be starting to appre-
ciate, COM goes to a lot of trouble
behind the scenes to ensure client
apps and COM objects avoid con-
flict and work in harmony.

ComObj And Apartments
The ComObj unit is quite canny
about its initialisation code. It first
checks to see whether the current
module is a DLL or EXE. If it’s a DLL
it does nothing. If it is an EXE it
makes use of a ComObj global vari-
able called CoInitFlags to deter-
mine what to do next with regard
to initialising COM. CoInitFlags is
pre-set by COM object class facto-
ries based upon the threading
models of the COM objects in the
out-of-process server.

CoInitFlags defaults to -1, which
means CoInitialize will be called
causing the primary thread to
enter an STA. Any COM objects
you create have associated class
factories constructed in their unit
initialisation sections. If the COM
object’s threading model suggests
it works in an MTA then CoInit-
Flags is set to COINIT_MULTITHR-
EADED. If the COM object claims
support for an STA then
CoInitFlags is set to COINIT_APART-
MENTTHREADED (assuming it hasn’t
already been set to COINIT_
MULTITHREADED).

CoInitFlags can also be manu-
ally set in the project source
before the call to Application.Ini-
tialize if you want to change the
automatic value or set a specific
value. For example, you may wish
to add in the flag COINIT_SPEED_
OVER_ MEMORY using the or operator,
which causes COM to optimise for
speed rather than memory. To do
this, add ComObj and ActiveX into
the project file’s uses clause and
insert this statement before Appli-
cation.Initialize:

CoInitFlags := CoInitFlags or
COINIT_SPEED_OVER_MEMORY;

Assuming CoInitializeEx can be
found, CoInitFlags is passed to it,
otherwise CoInitialize is called.
Usefully, a procedural variable
called CoInitializeEx is set to
point to the routine if it exists (or
nil if not). This variable was used
in Listing 1.

Delphi 4 And CoInitFlags
If you are using Delphi 4, you
should be aware that CoInitFlags
works a little differently. The class

uses ComObj, ActiveX;
...
if Assigned(ComObj.CoInitializeEx) then
OleCheck(ComObj.CoInitializeEx(nil, COINIT_MULTITHREADED))

else
CoInitialize(nil)

➤ Listing 1:
Initialising COM for an MTA.

16 The Delphi Magazine Issue 60

factories do not set this variable
with appropriate flags, meaning
that the job is left to you. You must
assign the appropriate threading
model flag to CoInitFlags before
Application.Initialize in the
project source file.

The COM Object Wizard
Now that we have some back-
ground on the subject, we should
look at exactly what the Threading
Model attribute on the various
COM-related wizards does. You
can specify a target threading
model when making a new COM
object, Automation object, ActiveX
control, ActiveForm and Active
Server object. There are four
options to choose from in Delphi 5:
Single, Apartment, Free and Both,
all explained in Table 1. Having
specified a threading model for
your object, it is your responsibil-
ity to ensure your object adheres
to that threading model.

Inter-Apartment
Interface Passing
I have mentioned a couple of times
that a COM object can only be
directly called from a thread in its
own apartment. Threads in other

apartments must talk to a COM
proxy, which will be automatically
created when the interface refer-
ence is marshaled across from the
original thread.

It is an error for code in one
thread to pass an interface refer-
ence directly to a thread in a differ-
ent apartment. If the reference
points to a COM proxy, an RPC_
E_WRONG_THREAD error will be gener-
ated when a method call is made
through it. If the reference is a
direct pointer to the object, COM
has no way to detect the problem
but it is still an error.

Any interface reference received
by a client application from an API
call or method is valid for all
threads in the caller’s apartment,
regardless of whether it is a direct
reference to the object or a refer-
ence to a COM proxy. So interface
references can readily be passed
between any threads in an MTA.

So, how do you pass an interface
reference from a thread in one
apartment to a thread in another
apartment? Or, how is the interface
reference marshaled to the other
thread? One way to marshal an
interface reference is with the COM
APIs CoMarshalInterThreadInter-
faceInStream and CoGetInterface-
AndReleaseStream as described by

Steve Teixeira (see Reference 5).
These APIs work using a memory
stream managed by COM. The first
one adds the interface reference to
the stream and the second one
unmarshals an interface reference
to a proxy object from the stream.

The only potential problem with
these routines is that they only
allow you to unmarshal the inter-
face reference into one thread. If
you need to give your interface ref-
erence to several threads in vari-
ous apartments, they are not really
helpful. This is where the Global
Interface Table, or GIT, comes in.

COM manages one GIT per pro-
cess and it is accessed through the
IGlobalInterfaceTable interface
(see Listing 2 for an appropriate
definition, which can be found in
the GITIntf.pas unit on the disk).
You can register an arbitrary inter-
face pointer as globally accessible
with the RegisterInterfaceIn-
Global method, which returns a
unique identifying number (a
cookie). GetInterfaceFromGlobal is
used by any thread in the process
to access an interface reference
using the appropriate cookie and
RevokeInterfaceFromGlobal stops it
being available.

The GIT requires Windows NT 4
with Service Pack 3 or later,

Single This attribute should be used in in-process servers only. Use of it in an out-of-process server will give the same result as
Apartment. You use this if your whole server is completely unaware of thread issues and expects each of its objects to
be accessed by the client’s primary (STA) thread that created it. It is really for backward compatibility as you are unable
to have multiple apartments in the server. Client method calls are all serialised through the client STA.

The main client STA will receive an interface reference to the object, whereas any other STA threads will receive
references to COM proxies.

Because single-threaded objects are loaded into the main client STA (the first STA created in the client), it is
important that the main STA remain active until the process terminates.

The class factory for one of these objects will not add a ThreadingModel value into its registry data.

Apartment This should be used for objects that are not thread-safe or re-entrant, but which can live in a multi-threaded server
within an STA. In other words, whilst COM will ensure that method calls occur synchronously, the object must be careful
to synchronise access to any global data in the server, as objects in other threads may access it simultaneously.

The class factory for an in-process server will add a ThreadingModel value of Apartment into the registry during
registration. An out-of-process server sets CoInitFlags to COINIT_APARTMENTTHREADED (if it is not already set to
COINIT_MULTITHREADED).

ActiveX controls and other COM objects with a GUI are typically marked with this attribute. This allows the UI
synchronisation to happen without effort on the part of the COM object developer.

Free This should be used for objects that are thread-safe and re-entrant, and can reside in an MTA. COM will permit multiple
threads to access the object simultaneously.

The class factory for an in-process server will add a ThreadingModel value of Free into the registry during
registration. An out-of-process server sets CoInitFlags to COINIT_MULTITHREADED.

Objects used in DCOM systems are often marked with this attribute.

Both Objects that are thread-safe and can live in an MTA, but which can also work happily in an STA, should use this
attribute.

This gives more flexibility than either of the two previous attributes. The class factory for an in-process server will add
a ThreadingModel value of Both into the registry during registration. An out-of-process server sets CoInitFlags to
COINIT_MULTITHREADED. The implication of this is that specifying the Both-threading model only has any real impact
in an in-process server. Additional comments about this threading model are coming up.

➤ Table 1: Threading models.

August 2000 The Delphi Magazine 17

Windows 95 with DCOM 1.2 (or
possibly 1.1, as the Platform SDK
refers to both versions) or Win-
dows 98. Unfortunately, Delphi 5
has no definition of this interface.
For these reasons the code pre-
sented in this article will use the
API pair rather than the GIT.

Creating STAs
In the client application, the pri-
mary thread can enter an STA by
simply adding ComObj into the
uses clause, or by calling OleInit-
ialize(nil) or CoInitialize(nil).
Since the client’s primary thread
already has a message pump, all
requirements are then met. An
out-of-process server with a user
interface also has a message pump
in the primary thread, which will
have entered an STA upon startup
thanks to ComObj.

The trickier part is making the
server create additional STAs.
Since COM objects in a server are
ultimately instantiated by their
class factory we’ll need to modify
the class factory. Instead of creat-
ing objects on the same thread, the
new class factory must create a
new thread that enters a new STA
and creates the object there.

There are three standard class
factories that we can inherit from.
TComObjectFactory creates COM
objects that have no associated
type information, TTypedComObject-
Factory creates COM objects that
do have type information (typi-
cally in a type library) and finally
TAutoObjectFactory creates Auto-
mation objects. Arbitrarily, I will
look specifically at TTypedCom-
ObjectFactory, which means I will
need to test it with COM objects
that have type information.

Each class factory implements
the IClassFactory interface, which
defines the CreateInstance
method. It is this method that is
responsible for bringing a COM
object to life, so that is where the
interesting code will be.

Listing 3 shows the factory class
and the apartment thread class.
When asked to instantiate a new
COM object, the factory first
checks it is running in an out-of-
process server and that the object
claims to support the apartment

threading model. If this is the case
it creates a new instance of the
apartment thread class. It then has
to wait until the secondary thread
has created the COM object, which
will be indicated by a Windows
semaphore being released.

This will only work in Delphi 5, as
Delphi 4’s class factory did not sur-
face the threading model through a
convenient property. For Delphi 4,
you would need to modify the code
to assume an apartment threading
model, and then make sure that
you only use it in conjunction with
apartment-threaded COM objects.

Whilst the factory is waiting, the
thread enters an STA by initialising
COM, then creates the COM object.
Assuming nothing goes wrong, it
marshals the interface reference
into a memory stream and uses the
semaphore to tell the factory that
the object is ready. The factory can
then read the interface reference
(for a COM proxy) from the stream
and pass it back to the client.

Whilst this is going on, the STA
thread starts a message loop, dis-
patching messages to the hidden
COM window as they come in. It
continues to do this until either a
wm_Quit message arrives (whereby
GetMessage returns False) or the
COM object is found to be done
with. This is the case when its ref-
erence count is at 1 (the only con-
nection to it is the thread’s
interface reference), at which
point the thread terminates.

One point that should be made is
that the implementation of
_Release uses the Interlocked-
Decrement API. The Microsoft docu-
mentation states that on Windows
98 and NT it returns the decre-
mented number. On Windows 95 it

const
CLSID_StdGlobalInterfaceTable : TGUID =
'{00000323-0000-0000-C000-000000000046}';

type
IGlobalInterfaceTable = interface(IUnknown)
['{00000146-0000-0000-C000-000000000046}']
function RegisterInterfaceInGlobal(pUnk: IUnknown; const riid: TIID;
out dwCookie: DWord): HResult; stdcall;

procedure RevokeInterfaceFromGlobal(dwCookie: DWord); safecall;
function GetInterfaceFromGlobal(dwCookie: DWord; const riid: TIID; out ppv):
HResult; stdcall;

end;
function GIT: IGlobalInterfaceTable;
const GITIntf: IGlobalInterfaceTable = nil;
begin
if not Assigned(GITIntf) then
GITIntf := CreateComObject(CLSID_StdGlobalInterfaceTable) as
IGlobalInterfaceTable;

Result := GITIntf
end;

➤ Listing 2: The Global Interface
Table interface.

claims to return a positive number
(assuming the decremented value
is above zero) but not necessarily
the actual decremented number,
so the test may prove problematic.

A workaround often used is to
change the code to check for a
value of 0 returned from _Release
on systems running Windows 95,
as shown in Listing 4. Tests have
shown such a change to work well.

This class factory and STA
thread class are very similar to the
ones that can be found in the VCL’s
VCLComunit. This unit is used by the
implementation units of remote
data modules, MTS data modules
and CORBA data modules. The
idea of the unit is to overcome per-
formance limitations when many
clients try accessing apartment-
threaded implementations of
these COM objects by creating
each apartment-threaded object in
a separate STA.

Because of the Windows 95 issue
with the InterlockedDecrement API,
you might find that apartment-
threaded MIDAS data modules will
give the odd problem when hosted
on Windows 95. If you encounter
this, the most straightforward
workaround is to move the server
application to Windows NT, which
has never suffered this problem.

A pair of simple projects that use
the code in Listing 3 are on the disk
as MultipleSTAClient.dpr and
MultipleSTAServer.dpr. They are
set up as normal, with a COM
object in the server project, but
the new class factory unit
(STAThread.pas) is used in the
COM object implementation unit.

18 The Delphi Magazine Issue 60

Additionally, the reference to
the normal class factory
(TTypedComObjectFactory) in the
unit’s initialisation section is
replaced with a reference
to TTypedComObjectFactory2 to
allow the STAs to be created.

The client project can create up
to 7 instances of the COM object
using a bunch of checkboxes.
Figure 5 shows Delphi’s Threads
Window displaying the server’s
primary thread along with 7 addi-
tional STA threads created by the
class factory.

This is actually not the best
implementation by a long shot. If
35 objects are needed in quick suc-
cession, 35 new threads will be cre-
ated in addition to the server’s
primary STA thread, which might
be excessive. Some form of thread

pool would be advisable in a real
application.

As you can see, though, creating
multiple STAs involves a bit of fid-
dling around. There is also the
problem that passing these inter-
face references around requires
marshaling which has an overhead
(all those proxy objects being
created). Having multiple threads
in an MTA is much easier to
achieve as those threads do not
need a message pump.

Apartment Interaction
Before finishing off, we should
summarise how various apartment
types interact between clients and
both in-process and out-of-process
servers.

In the case of an out-of-process
server, the client will always be
given a proxy and so COM will
always sit in between. If the object
is in an STA, COM serialises the

calls. If the object is in an MTA,
COM executes the client calls on
RPC threads.

When the server is in-process,
COM will interject between the
client apartment and the server
object only if there is a mismatch
in threading support, otherwise it
will allow the code in the client
apartment thread to talk directly
to the object. When COM does this

type
TTypedComObjectFactory2 =
class(TTypedComObjectFactory, IClassFactory)

protected
//Create the COM object in a separate thread
function CreateInstance(const UnkOuter: IUnknown;
const IID: TGUID; out Obj): HResult; stdcall;

end;
TApartmentThread = class(TThread)
private
FFactory: IClassFactory2;
FUnkOuter: IUnknown;
FIID: TGuid;
FSemaphore: THandle;
FStream: Pointer;
FCreateResult: HResult;

protected
procedure Execute; override;

public
constructor Create(Factory: IClassFactory2;
UnkOuter: IUnknown; IID: TGuid);

destructor Destroy; override;
property Semaphore: THandle read FSemaphore;
property CreateResult: HResult read FCreateResult;
property ObjStream: Pointer read FStream;

end;
function TTypedComObjectFactory2.CreateInstance(
const UnkOuter: IUnknown; const IID: TGUID; out Obj):

HResult;
begin
//Verify we are not an in-proc server and
//that the object is STA-ready
if not IsLibrary and (ThreadingModel = tmApartment) then
begin
LockServer(True);
try
//Create thread
with TApartmentThread.Create(Self, UnkOuter, IID) do
begin
//Wait for thread to create the COM object
if WaitForSingleObject(Semaphore, INFINITE) =
WAIT_OBJECT_0 then begin
Result := CreateResult;
if Result <> S_OK then
Exit;

//If all is well, unmarshal interface from stream
Result := CoGetInterfaceAndReleaseStream(
IStream(ObjStream), IID, Obj);

end else
Result := E_FAIL

end
finally
LockServer(False)

end
end else
//In-proc servers and non-STA objects get created as
// normal
Result := inherited CreateInstance(UnkOuter, IID, Obj);

end;
constructor TApartmentThread.Create(Factory: IClassFactory2;
UnkOuter: IUnknown; IID: TGuid);

begin
inherited Create(True);
FFactory := Factory;
FUnkOuter := UnkOuter;
FIID := IID;
//Create the synchronisation device
FSemaphore := CreateSemaphore(nil, 0, 1, nil);
FreeOnTerminate := True;
//After setting all thread attributes, let thread start
Resume

end;
destructor TApartmentThread.Destroy;
begin
CloseHandle(FSemaphore);
inherited Destroy;

end;
procedure TApartmentThread.Execute;
var
Msg: TMsg;
Unk: IUnknown;

begin
try
CoInitialize(nil); //Enter STA
try
//Create object
FCreateResult := FFactory.CreateInstanceLic(
FUnkOuter, nil, FIID, '', Unk);

FUnkOuter := nil;
FFactory := nil;
//Marshal interface reference into stream
if FCreateResult = S_OK then
CoMarshalInterThreadInterfaceInStream(FIID, Unk,
IStream(FStream));

//Allow factory to read the interface reference
ReleaseSemaphore(FSemaphore, 1, nil);
if FCreateResult = S_OK then
//Start the message pump
while GetMessage(Msg, 0, 0, 0) do begin
DispatchMessage(Msg);
//See if only connection to this object is ours
//If it is, then this thread's work is done
Unk._AddRef;
if Unk._Release = 1 then
Break;

end;
finally
Unk := nil;
//Leave the STA
CoUninitialize;

end;
except
// No exceptions should go unhandled

end;
end;

➤ Listing 3: A class factory that
creates new STAs.

➤ Figure 5: Multiple STAs in a
process.

20 The Delphi Magazine Issue 60

form of interjection it uses another
thread from the RPC thread pool
and enters an appropriate apart-
ment for the object. The client
apartment gets a proxy.

Efficiency Considerations
When writing in-process COM
objects you must consider not only
how much time you will put into
ensuring thread safety, but also
issues of efficiency in inter-
apartment communication.

Firstly, whilst STA-compliant
objects are easier to write, if many
clients call into them the calls will
be serialised and may cause unac-
ceptable delay. This includes calls
to multiple objects created within
the same STA. Since there is only
one thread in the STA all method
calls to all objects will be serial-
ised. Examples of where this might
be the case include middle-tier
COM servers or web servers that
have many client applications.

If the client applications all fire
off method calls to the server appli-
cation, the calls will be executed
one at a time, in series. Taking the
time to make your object thread-
safe may be a good investment,
allowing multiple client calls to
execute concurrently.

But if you take time to cover
re-entrancy issues and protect
instance data and decide to mark
your object as MTA-compliant
(using the Free attribute in the
wizard), you should carefully con-
sider which COM client application
threads might call your object.

Out-of-process server objects
will be called by clients that use
COM proxies regardless of the
client apartment, but in-process
objects are a different matter. If
many of the expected clients are to
be STAs, many proxy objects will
be created on your behalf and so a
lot of implicit marshaling and
thread-switching will occur.

The Both-Threading Model
In this scenario, it might be better
to mark your object as Both in the
wizard, meaning it will work both
in an STA and an MTA. This
removes COM’s obligation to make
COM proxies and means that your
object can be created directly in

the client STA or MTA, thereby
increasing efficiency.

Using this threading model for
an in-process object must also be
done with care and forethought.
Firstly, the object must be written
in a thread-safe manner, because it
can be directly instantiated in an
MTA environment. Secondly, you
must be very careful about accept-
ing any callback references (inter-
face references to objects who call
you and expect you to call them
back at some point later) as
method parameters.

Let’s say your object is created
by an object in an MTA. Both your
object and the creator are in the
same apartment, and so your cre-
ator has an interface to you, not to
a proxy. It calls one of your meth-
ods passing a reference to itself,
which will also be a direct pointer.
It is not a problem for you to call
one of your caller’s methods using
this reference, as you are both in
the same apartment.

Now let’s say that the creator
passes to another thread in the
same MTA an interface reference
to you. If that thread invokes a
method that needs to call via the
callback, this is still fine as both
threads are in the same apartment.
So where is the problem?

The problem comes in when the
object is created in an STA. Again,
the creator has a direct interface
reference and if it calls one of your
methods passing in a callback, this
will also be a direct interface
reference. No problem so far, as
there is only one apartment
involved. But let’s assume the cre-
ating thread marshals its interface
reference to your object to another
thread, in another apartment. If
your object uses the callback
(which was not a proxy), we break
one of the rules of COM. We are
calling an STA object that lives in
one thread from a completely
different thread.

So, to overcome this problem,
you must marshal any interface ref-
erences that come into your
object, but this is only necessary if
you are in an STA. To do this in an
MTA would lead to unnecessary
marshaling, thanks to the proxy’s
existence.

So the Both-threading model
should really only be used for
objects whose interface methods
never receive callback interfaces
as parameters. If there is any
uncertainty, don’t use Both.

MTS, COM+, Windows 2000
When writing MTS objects, you
can forget about the MTA model,
as it is incompatible with MTS.
Instead, the STA model is favoured
(each STA object is created in a
new thread in a new STA). MTS
uses the concept of an activity,
which is a group of one or more
objects that do something on
behalf of a client. Each activity has
one single logical thread running
through it (which enforces call
serialisation but without a Win-
dows message queue), although
the objects can be distributed
across multiple processes.

Activities came about to help
COM objects become more
scaleable. STAs alone are not
scaleable without a lot of work
pooling a number of STA threads.
MTAs already pool a number of
threads, but the concurrent
access issue, along with the lack of
thread affinity (discussed earlier),
poses headaches for developers.

COM+, introduced in Windows
2000, introduces another thread-
ing model called the
Thread-Neutral Apartment (TNA).
Any process can have at most one
TNA and in-process COM objects
advertise a desire to run in a TNA
with a ThreadingModel registry key
of Neutral. A TNA is not a place
where an object lives, but MTA and
STA threads that create a TNA
object get a proxy that allows

➤ Listing 4: Making Listing 3
work on Windows 95.

function FinalRefCount: Integer;
begin
//Return 0 on Win95 (Windows 4.0)
if (Win32Platform =
VER_PLATFORM_WIN32_WINDOWS) and
(Win32MajorVersion = 4) and
(Win32MinorVersion = 0) then
Result := 0

else
Result := 1

end;
...
//The fixed code
Unk._AddRef;
if Unk._Release = FinalRefCount
then Break;

August 2000 The Delphi Magazine 21

method calls without involving a
thread switch (therefore rather
efficient).

A TNA object allows its methods
to execute on multiple threads, but
only one thread will be executing
any method of a given object
instance at any time. It does not
require synchronisation of access
to its instance data, unlike an MTA.

For UI-less objects, TNA is the
preferred model under COM+,

although objects with a UI should
still use STAs.

Together, MTS and COM+ pro-
vide advanced and efficient thread
management along with pooling
logic which enable developers to
worry less about the low-level
intricacies of COM threading.

C++Builder 5 supports the devel-
opment of COM+ objects and also
supports the TNA: we can assume
Delphi 6 will have this too.

References
1. www.techvanguards.com/ com/com.htm. Binh Ly’s COM programming web pages,
containing much of the scarce information on advanced COM issues such as
concurrency and callbacks.

2. Delphi COM Programming by Eric Harmon, published by Macmillan Technical
Publishing. This book is a useful COM reference text, although it contains no
information on COM threading issues.

3. Essential COM by Don Box, published by Addison-Wesley.

4. Effective COM by Don Box et al, published by Addison-Wesley.

5. COM Corner: More Callbacks by Steve Teixeira in The Delphi Magazine, Issue 58
(June 2000). Discusses marshaling interfaces for callbacks.

6. Win32 Multithreaded Programming by Aaron Cohen, Mike Woodring, Ronald
Pertruska, published by O’Reilly & Associates.

7. Multithreading Applications in Win32: The Complete Guide To Threads by Jim
Beveridge and Robert Wiener, published by Addison-Wesley.

8. Microsoft Developer Network Library CD. There are many articles covering
multi-threaded COM to be found on this library.

Summary
Hopefully, having hung on to the
end, you now have a much better
understanding of what COM does
to help thread-safe and thread-
ignorant code to work together in
harmony without any outside
help. Next time someone drops the
word apartment into a conversa-
tion about COM, feel free to join in.

Acknowledgements
Thanks to Danny Thorpe, Binh Ly,
Roy Nelson, Guy Smith-Ferrier,
Geoff Lawrence and Malcolm
Matthews for their feedback.

Brian Long is a UK-based free-
lance consultant and trainer. He
spends most of his time running
Delphi and C++Builder training
courses for his clients, and doing
problem-solving work for them.
Brian is at brian@blong.com

Copyright © 2000 Brian Long
All rights reserved

	Apartments
	Apartment Types
	How Apartments Are Created
	Why Have Apartments?
	How Does An STA Work?
	How Does An MTA Work?
	Choosing Apartment Types
	In-Proc COM Object Threading Model
	ComObj And Apartments
	Delphi 4 And CoInitFlags
	The COM Object Wizard
	Inter-Apartment Interface Passing
	Creating STAs
	Apartment Interaction
	Efficiency Considerations
	The Both-Threading Model
	MTS, COM+, Windows 2000
	Summary
	Acknowledgements
	References

